prove interesting. A previous example of unusual thermochemistry in the hydration of an ion is that of $t-C_4H_9^+$ where the unusual behavior is ascribed to the transfer of charge to water to produce a protonated *tert*-butyl alcohol.²⁶

Conclusions

The thermodynamic results of the present study support the conclusion of Henchman et al.¹⁰ concerning the unreactive nature of PO_3^- in the gas phase. Our results suggest that the reaction of PO_3^- with water in the gas phase produces the simple adduct

(26) Hiraoka, K.; Kebarle, P. J. Am. Chem. Soc. 1977, 99, 360.

 PO_3 - H_2O . However, hydration of PO_3 - by three water molecules leads to a chemical transformation, presumably to the dihydrogen orthophosphate anion. The thermochemical data on $\Delta H_f^{\circ}(PO_3^{-1})$ from Rudnyi and co-workers³ are consistent with the present interpretation.

Acknowledgment. We thank Drs. Michael Henchman, Louis Quin, and Stephen Benkovic for fruitful discussions. Financial support by the Army Research Office (Grant DAAG29-85-K-0215) and the U.S. Department of Energy (Grant DE-FGO2-88ER60648) is gratefully acknowledged.

Registry No. PO₃⁻, 15389-19-2.

Revised and Modified Mechanisms for the Reactions of Bare Transition-Metal Ions M^+ (M = Fe, Co, Ni) with $n-C_3H_7X$ (X = NH₂, OH) in the Gas Phase

Sigurd Karrass, Tilmann Prüsse, Karsten Eller, and Helmut Schwarz*

Contribution from the Institut für Organische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12, West Germany. Received April 5, 1989

Abstract: The metastable ion (MI) decompositions of $n-C_3H_7X/M^+$ complexes (X = OH, NH₂; M = Fe, Co, Ni) in the gas phase have been studied by tandem mass spectrometry. The analysis of the MI spectra of a large set of isotopomers uncovers processes which require a revision and modification of the previously suggested mechanisms for the activation of CH and CC bonds in these particular systems. Highlights of the novel findings are inter alia the observation that Fe⁺-mediated ethylene loss from $n-C_3H_7NH_2$ involves the α - and β -methylene units. "Scrambling" of these two intact CH₂ groups precedes the β -hydrogen transfer which eventually leads to NH₃ and C₃H₆ from C₃H₇NH₂/Fe⁺. For the Co⁺ and Ni⁺ complexes this exchange process is not observed, and ethylene loss can be described in terms of the "remote functionalization" concept. In the $n-C_3H_7OH/M^+$ system, the most unexpected findings concern the mechanism of the competitive formations of CH₃OH and C₂H₄. For M⁺ = Co⁺, methanol contains the intact methyl and OH groups of the precursor propanol, and C₂H₄ originates from the internal part of the alkyl chain (C(α)/(C(β)). This reaction sequence is to approximately 20% also operative for the Ni⁺ system. In addition, the "anchored" Ni⁺ induces cleavage of the C(α)/C(β) bond to eventually generate C₂H₄ (containing C(β) and C(γ) and CH₃OH. The methyl group of the latter contains the original α -CH₂ unit and one hydrogen from the CH₃ group of propanol. The results underline the necessity of employing labeled presursors in mechanistic studies of organometallic systems in the gas phase.

Gas-phase experiments with "naked" transition-metal ions offer a unique possibility to probe, in the absence of any solvation, ion-pairing and/or ligand effects, the intrinsic properties of reactive organometallic species and to evaluate the potential role these remarkable transients play in the initial steps of the activation of C-H and C-C bonds.¹ Not surprisingly, this topic is of fundamental interest in catalysis and has attracted considerable attention in the last decade.^{1,2} Quite a few reactions of transition-metal ions M^+ with organic substrates can be described by a mechanism (Scheme I), suggested for the first time by Allison and Ridge.^{3a} Oxidative addition of the C-X bond (X = functional group) of the organic substrate 1 to M^+ produces 2 which generates via β -hydrogen transfer the olefin-hydrido complex 3. Depending on the binding energies, 3 undergoes either alkene detachment (3 \rightarrow RCH=CH₂) or reductive elimination of HX.

The selective functionalization of *remote* C-H or C-C bonds, i.e., several carbon atoms away from the activating group X,

(3) (a) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1979, 101, 4998. (b) Babinec, S. J.; Allison, J. Ibid. 1984, 106, 7718.

Selected references: (a) Müller, J. Angew. Chem., Int. Ed. Engl. 1972, 11, 653. (b) Müller, J. The Organic Chemistry of Iron; Academic Press: New York, 1978; Vol. 1, p 145. (c) Beauchamp, J. L.; Stevens, A. E.; Corderman, R. R. Pure Appl. Chem. 1979, 51, 967. (d) Gregor, I. K.; Guihaus, M. Mass Spectrom. Rev. 1984, 3, 39. (e) Freiser, B. S. Talanta 1985, 32, 697. (f) Allison, J. Prog. Inorg. Chem. 1986, 34, 627. (g) Armentrout, P. B. In Structure/Reactivity and Thermochemistry of Ions; Ausloos, P., Lias, S. G., Eds.; D. Reidel: Dordrecht, 1987; No. 193, p 97. (h) Ridge, D. P. Ibid. 1987; No. 193, p 165. (i) Squires, R. R. Chem. Rev. 1987, 87, 623. (j) Armentrout, P. B. In Gas Phase Inorganic Chemistry; Russell, D. H., Ed.; Plenum: New York, 1989. (k) Czekay, G.; Drewello, T.; Eller, K.; Lebrilla, C. B.; Prüsse, T.; Schulze, C.; Steinrück, N.; Sülzle, D.; Weiske, T.; Schwarz, H. In Organometallics in Organic Synthesis 2; Werner, H., Erker, G., Eds.; Springer Verlag: Heidelberg, 1989; p 203. (l) Schwarz, H. Acc. Chem. Res. 1989, 22, 282. (m) More than 100 references on the reactions of bare transition-metal ions with organic substrates, together with a detailed discussion of the reactions of gaseous octyne isomers with Fe⁺, may be found in: Schulze, C.; Schwarz, H.; Peake, D. A.; Gross, M. L. J. Am. Chem. Soc. 1987, 109, 2368. (n) Buckner, S. W.; Freiser, B. S. Polyhedron 1988, 7, 1583. (o) Eller, K.; Schwarz, H. Chimia, in press.

⁽²⁾ Selected reviews: (a) Parshall, G. W. Catalysis 1977, 1, 335. (b) Haggin, J. Chem. Eng. News 1982, 60, 13. (c) Muetterties, E. L. J. Chem. Soc. Rev. 1983, 11, 283. (d) Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes; D. Reidel: Dordrecht, 1984. (e) Bergman, R. G. Science 1984, 223, 902. (f) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (g) Silvestre, J.; Hoffmann, R. Helv. Chim. Acta 1985, 68, 1461. (h) Green, M. L.; O'Hare, D. Pure Appl. Chem. 1985, 57, 1897. (i) Baudry, D.; Ephritikine, M.; Felkin, H.; Fillebeen-Khan, T.; Gault, Y.; Holmes-Smith, R.; Yingrus, L.; Zakrzewski, J. In Organic Synthesis; Streith, J., Prinzbach, H., Schill, G., Eds.; Blackwell Scientific Publications: Oxford, 1985; p 25. (j) Halpern, J. Inorg. Chim. Acta 1985, 100, 41. (k) Rothwell, I. P. Polyhedron 1985, 4, 77. (l) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, CA, 1987. (m) de Meijere, A.; tom Dieck, H., Eds.; Organometallics in Organic Synthesis: Aspects of a Modern Interdisciplinary Field; Springer-Verlag: Heidelberg, 1988.

Scheme I

4

5

represents a great challenge. Such processes are common to enzymes (for example, enzymatic conversion of stearic to oleic acid and/or microbiological hydroxylation of C-H bonds) which "anchor" a functional group and geometrically select a specific segment of the substrate; however, in solution chemistry only a few cases are reported⁴ where a similar principle seems to be operative. Breslow⁴ has coined the term "remote functionalization" for the coordination to a functional group followed by selective reactions at sites separated spatially from the complexing group X. We, 1k,1,0,5 and later others,6 have recently demonstrated that remote functionalization can be achieved in the gas phase for quite a variety of aliphatic substrates including nitriles,^{5,6} isonitriles,⁷ alcohols,⁸ ketones,⁹ alkynes,^{1m,10} and allenes,¹¹ respectively. Specifically, we have shown that the C-H bond of a terminal methyl group of a flexible alkyl chain can be oxidatively added to the "anchored" transition-metal ion M⁺ (Scheme II). The insertion is followed by a β -hydrogen shift (5 \rightarrow 6) or β -cleavage of the C-C bond $(5 \rightarrow 7)$ to generate intermediates which eventually undergo reductive elimination of H₂ or ligand detachment. This behavior contrasts sharply with that depicted in Scheme I, and it demonstrates that selective C-H activation can indeed be achieved at positions remote from the functional group Χ.

(4) For reviews on this concept, see: (a) Breslow, R. Chem. Soc. Rev. 1972, 1, 553. (b) Breslow, R. Acc. Chem. Res. 1980, 13, 170. (c) Breslow, R.; Adams, A.; Guo, T.; Hunger, J. Lectures in Heterocyclic Chemistry 1987, 9, 43.

(5) (a) Lebrilla, C. B.; Schulze, C.; Schwarz, H. J. Am. Chem. Soc. 1987, 109, 98. (b) Drewello, T.; Eckart, K.; Lebrilla, C. B.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1987, 76, R1. (c) Lebrilla, C. B.; Drewello, T.; Schwarz, H. *Ibid.* **1987**, *79*, 287. (d) Lebrilla, C. B.; Drewello, T.; Schwarz, H. *J. Am. Chem. Soc.* **1987**, *109*, 5639. (e) Prüsse, T.; Lebrilla, C. B.; Drewello, T.; Schwarz, H. *Ibid.* **1988**, *110*, 5986. (f) Prüsse, T.; Drewello, T.; Lebrilla, C. B.; Schwarz, H. *Ibid.* **1989**, *111*, 2857. (g) Czekay, G.; Drewello, T.; Schwarz, H. *Ibid.* **1989**, *111*, 4561. (h) Czekay, G.; Drewello, T.; Eller, K.; Zummack, W.; Schwarz, H. Organometallics, in press. (6) Stepnowski, R. M.; Allison, J. Organometallics 1988, 7, 2097.

(7) (a) Eller, K.; Lebrilla, C. B.; Drewello, T.; Schwarz, H. J. Am. Chem.
Soc. 1988, 110, 3068. (b) Eller, K.; Schwarz, H. Chem. Ber., in press.
(8) Prüsse, T.; Schwarz, H. Organometallics, in press.
(9) Czekay, G.; Eller, K.; Schröder, D.; Schwarz, H. Angew. Chem., Int.

- Ed. Engl., in press.
- (10) (a) Schulze, C.; Schwarz, H. Chimia 1987, 41, 29. (b) Schulze, C. Schwarz, H. J. Am. Chem. Soc. 1988, 110, 67. (c) Schulze, C.; Weiske, T.; Schwarz, H. Organometallics 1988, 7, 898.

Table I. Neutral Products Formed from Fe⁺ Complexes of n-Propylamine Isotopomers 8a-d

	$\begin{array}{c} CH_3CH_2-\\ CH_2ND_2/\\ Fe^+ 8a-Fe^+ \end{array}$	CH ₃ CH ₂ - CD ₂ NH ₂ / Fe ⁺ 8b -Fe ⁺	CH ₃ CD ₂ - CH ₂ NH ₂ / Fe ⁺ 8c-Fe ⁺	CD ₃ CH ₂ - CH ₂ NH ₂ / Fe ⁺ 8d-Fe ⁺
H₂ HD	100	100	100	100
NH3 NH2D NHD2	100	50 50	50 50	100
$\begin{array}{c} C_2H_4\\ C_2H_2D_2 \end{array}$	100	100	100	100
C ₃ H ₆ C ₃ H ₅ D C ₃ H ₄ D ₂ C ₃ H ₃ D ₃	100	50 50	50 50	100

^a Data are given in % 2 neutral products, for each neutral normalized to 100%.

Scheme III

C₂H₄

7

Here, we shall present data which warrant a revision and substantial modification of the mechanism (Scheme I) previously suggested^{3,12} for *n*-propyl alcohol and *n*-propylamine (C_3H_7OH and $C_3H_7NH_2$) with transition metal ions M⁺ (M = Fe, Co, Ni). By studying a large set of labeled isotopomers of $n-C_3H_7X$,¹³ not only a detailed insight into the activation of C-H and C-C bonds is achieved, but, in addition, several fundamental aspects of many unimolecular reactions of organometallic species in the gas phase are unravelled.

For didactic purposes the organization of the paper is as follows. First, we describe the metastable ion (MI) decompositions of $n-C_3H_7NH_2/M^+$ complexes (M = Fe, Co, Ni), and then discuss the C_3H_7OH/M^+ systems. A comparison of the two systems will be made, together with an evaluation of the data reported in the literature.3,12,14

^{(12) (}a) Tsarbopoulos, A.; Allison, J. J. Am. Chem. Soc. **1985**, 107, 5085. Huang, S.; Holman, R. W.; Gross, M. L. Organmetallics **1986**, 5, 1857. (13) Preliminary results for the system $C_3H_7NH_2/M^+$ (M = Fe, Co) were

reported as a short communication: Karrass, S.; Eller, K.; Schulze, C.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1989, 28, 607

⁽¹⁴⁾ It has been argued by a referee that it might be unjustified to compare the results of metastable ion dissociation (as reported in the present study) with data obtained from ion/molecule reactions using ion cyclotron resonance mass spectrometry (as described in ref 3 and 12). It might suffice to state that in two recent comparative studies evidence was presented that a comparison between MI and FTICR data is indeed meaningful after consideration of a few minor points; beyond that, very good if not excellent agreement is found with regard to the isotope distribution of neutral molecules generated in the reactions of many transition-metal ions with quite a variety of organic In the reactions of many transition-metal ions with quite a variety of organic substrates. These findings support our view that the data presented in the present contribution for the C_3H_7X/M^+ systems reflect *intrinsic* properties of the organometallic complexes rather than special features of the mass spectrometric methodology used. This is also supported by preliminary results (Eller, K.; Schwarz, H., unpublished) on $C_3H_7NH_2/M^+$ systems under FTICR conditions. For leading references, see: (a) Eller, K.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1989, 93, 243. (b) Eller, K.; Zummack, W.; Schwarz, H. J. Am. Chem. Soc., in press.

Scheme IV

Results and Discussion

1. $n-C_3H_7NH_2/M^+$ Systems. The product distribution of metastable ions of the $C_3H_7NH_2/Fe^+$ complex is given in Scheme III. Although the *actual* structures of both the ions and the neutrals¹⁵ are unknown, the study of the isotopomers of *n*-propylamine (Table I) provides a detailed insight with regard to the genesis of the species formed.

The labeling data prove that molecular hydrogen originates exclusively from the β and γ positions of the propyl chain. This 1,2-elimination is not preceded by hydrogen scrambling, and the process can be described in terms of Scheme II (X = NH₂: **4** \rightarrow **5** \rightarrow **6** \rightarrow H₂). We note the absence of oxidative addition of Fe⁺ to the N-H bond, followed by β -hydrogen transfer and reductive elimination of H₂ to eventually generate an Fe⁺/imine complex, as previously suggested¹⁶ for the Co⁺-induced dehydrogenation of amines (see, however, below).

The remaining processes of the $n-C_3H_7NH_2/Fe^+$ system, i.e., formation of NH_3 , C_3H_6 , and C_2H_4 , will be discussed together as all three reactions proceed via the same intermediate. While NH_3 and C_3H_6 could in principle be formed according to the traditional mechanism (Scheme I), this scheme cannot explain the generation of C_2H_4 . The presumption that C_2H_4 may result from a "remote functionalization" process (Scheme II) is, however, also not supported by the labeling data. The latter leave no doubt that C_2H_4 exclusively contains the α - and β -methylene units of the propyl chain. The γ position, which would be incorporated in the neutral, if Scheme II pertains to the formation of C_2H_4 , is not involved. In addition, ammonia and propene whose formation is linked with each other via intermediate $3 (R = CH_3;$ $X = NH_2$; M = Fe) are not formed in a straightforward manner from $n-C_3H_7NH_2/Fe^+$. If this were the case, the hydrogen transferred from the propyl chain should originate specifically from the β position; as a consequence, the Fe⁺ complex of CH₃CD₂-CH₂NH₂ should decompose exclusively to NH₂D and CH₃C-D=CH₂ while from CH₃CH₂CD₂NH₂/Fe⁺ only NH₃ and CH₃-CH=CD₂ are expected to be formed. These expectations are not met by the labeling data. Both the α - and β -methylene groups participate to exactly the same amount in the products formation.

As a degenerate hydrogen exchange within the alkyl chain via, for example, dyotropic rearrangements¹⁷ can be ruled out,¹⁸ we have to conclude that the "intact" α - and β -methylene groups become chemically equivalent prior to the generation of ammonia and propene. We propose the olefin complex 10 (Scheme IV) as the central species in the eventual production of C_2H_4 , NH₃, and C_3H_6 . This complex, which can be formed by oxidative addition of the $C(\beta)-C(\gamma)$ bond to the "anchored" Fe⁺ followed by cycloreversion (Scheme IV: $8-Fe^+ \rightarrow 9 \rightarrow 10$), serves two functions: (i) 10 can be viewed as the immediate precursor for the detachment of C_2H_4 containing specifically the α - and β methylene groups; (ii) complex 10 also accounts for the "equilibration" of the α - and β -CH₂ groups. Although the geometric and electronic details of this equilibration are unknown and no thermochemical data seem to exist for the $C_3H_7NH_2/Fe^+$ system, it is not unreasonable to assume that rotation around the $Fe-C_2H_4$ bond is energetically less demanding than alkene detachment.¹⁹ Insertion of the ethylene unit in the Fe⁺-CH₃ bond (a gas-phase analogue of the Ziegler-Natta type C-C bond formation^{20,21}) generates 11, rendering the original α - and β methylene groups indistinguishable. Rapid, irreversible hydrogen transfer leads to the olefin complex 12; the latter decomposes to ammonia and propene.

Although it remains open to question whether the reactions connecting 8-Fe⁺, 9, 10, and 11 are reversible or not, decisions can be made at least for some of the steps depicted in Scheme IV. For example, we do not think that the β -methyl transfer 11 \rightarrow 10 is of any importance in the C₃H₇NH₂/Fe⁺ system; this presumption is based on the following grounds. If this reaction would indeed occur, its rate must be significantly faster than the " β "-hydrogen transfer 11 \rightarrow 12 in order to account for the required equilibration of the α - and β -methylene groups from a directly formed insertion product 8-Fe⁺ \rightarrow 11. As a β -hydrogen transfer to a metal center is known as an extremely fast process in organometallic systems^{1,2} and no clear-cut proof for the operation of an authentic β -methyl migration seems to exist,^{21,22} we discard the reaction path $11 \rightarrow 10$. Similarly, we rule out the possibility that 11 undergoes a metal extrusion reaction $11 \rightarrow 8$ -Fe⁺. On the other hand, the direct insertion step 8-Fe⁺ \rightarrow 11 is feasible; however, in view of the conflicting^{3b,23} thermochemical data for insertion of M⁺ into a C-N bond of amines, no definitive decision can be made. It is important to note that if this reaction occurs, its rate must be significantly smaller than that of the multistep reaction 8-Fe⁺ \Rightarrow 9 \Rightarrow 10. With regard to the reversibility of the process $9 \Rightarrow 10$ as well as reductive ring-opening of metallacycles, there exist many precedents in literature.24,25

(23) Buckner, S. W.; Freiser, B. S. J. Am. Chem. Soc. 1987, 109, 4715.

⁽¹⁵⁾ Owing to sensitivity limitations, we were unable to apply the otherwise powerful method of collisionally induced dissociative ionization (CIDI), a variant of neutralization-reionization mass spectrometry (NRMS), for the characterization of the neutrals generated from the organometallic complexes. For pertinent reviews, see: (a) Wesdemiotis, C.; McLafferty, F. W. Chem. Rev. 1987, 87, 485. (b) Terlouw, J. K.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 805. (c) Terlouw, J. K. Adv. Mass Spectrom. 1989, 11, 984. (d) Holmes, J. L. Ibid. 1989, 11, 53. (e) Schwarz, H. Pure Appl. Chem. 1989, 61, 685. (f) McLafferty, F. W. Science, in press.

⁽¹⁶⁾ Radecki, B. D.; Allison, J. J. Am. Chem. Soc. 1984, 106, 946.

⁽¹⁷⁾ Definition: Reetz, M. T. Tetrahedron 1973, 29, 2189.

⁽¹⁸⁾ This conclusion follows directly from the observation that the α methylene group is *not* involved in the generation of molecular hydrogen from C₃H₇NH₂/Fe⁺.

⁽¹⁹⁾ The (M⁺-olefin) bond dissociation energies are, for many systems, of the order of 40-60 kcal/mol (see: Hanratty, M. A.; Beauchamp, J. L.; Illies, A. J.; v. Koppen, P.; Bowers, M. T. J. Am. Chem. Soc. 1988, 110, 1, and references cited therein). In contrast, the barrier for olefin rotations in complexes of the general structure (CO)₄Fe-olefin is significantly smaller (10-15 kcal/mol): (a) Kruczynski, L.; Li Sing, L. K. K.; Takats, M. J. J. Am. Chem. Soc. 1974, 96, 4006. (b) Wilson, S. T.; Coville, N. J.; Shapley, J. R.; Osborn, J. A. Ibid. 1974, 96, 4038. (c) Segal, J. A.; Johnson, B. F. G. J. Chem. Soc., Dalton Trans. 1975, 677, 1990.

⁽²⁰⁾ Watson, P. L. J. Am. Chem. Soc. 1982, 104, 337.

⁽²¹⁾ Migratory insertion of an alkyl group to an alkylidene fragment $(CH_3 - M = CH_2 \rightleftharpoons M - CH_2CH_3)$ is well known for many cationic alkylidene/alkyl transition-metal complexes. See, for example: (a) Schrock, R. R. Acc. Chem. Res. 1979, 12, 98. (b) Threlkel, R. S.; Bercaw, J. E. J. Am. Chem. Soc. 1981, 103, 2650. (c) Hajes, J. C.; Pearson, G. D. N.; Cooper, N. J. Ibid. 1981, 103, 4648. (d) Thorn, D. L. Organometallics 1982, 1, 879. (e) Kletrin, H.; Werner, H.; Serhadli, P.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1983, 22, 46.

⁽²²⁾ In none of the systems studied so far in our group were we able to obtain evidence for the operation of a β -methyl shift: (a) Prüsse, T.; Lebrilla, C. B.; Drewello, T.; Schwarz, H. J. Am. Chem. Soc. **1988**, 110, 5986. (b) Eller, K.; Drewello, T.; Zummack, W.; Allspach, T.; Annen, U.; Regitz, M.; Schwarz, H. *Ibid.* **1989**, 111, 4228. For a counter example, see: (c) Houriet, R.; Halle, L. F.; Beauchamp, J. L. Organometallics **1983**, 2, 1818.

Table II. Neutral Products Formed from Co ⁺ and Ni ⁺ Complexes of <i>n</i> -Propylar	amine Isotopomers ^a
--	--------------------------------

CH ₃ CH ₂ CH ₂ ND ₂		CH ₃ CH ₂ CD ₂ NH ₂		CH ₃ CD ₂ CH ₂ NH ₂		CD ₃ CH ₂ CH ₂ NH ₂	
8a-Co+	8a-Ni ⁺	8b-Co+	8b-Ni ⁺	8c-Co ⁺	8c-Ni ⁺	8d-Co+	8d-Ni ⁺
100	45 55	100	70 30	100	67 33	100	43 43 14
100	100	100	>99	23	3		
			<1	77	97	75 25	100
100	100		100	100	100	100	100
	CH ₃ CH ₂ 8a-Co ⁺ 100 100	CH ₃ CH ₂ CH ₂ ND ₂ 8a-Co ⁺ 8a-Ni ⁺ 100 45 55 55 100 100 100 100	$ \begin{array}{rcl} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c }\hline CH_3CH_2CH_2CH_2ND_2 & CH_3CH_2CD_2NH_2 & CH_3CD_2\\\hline \hline 8a-Co^+ & 8a-Ni^+ & 8b-Co^+ & 8b-Ni^+ & 8c-Co^+\\\hline 100 & 45 & 100 & 70 & & \\ 55 & 30 & 100 & & \\ 100 & 100 & 100 & >99 & & \\ & & & & & & \\ 100 & 100 & & & & & \\ 100 & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & & & \\ 100 & & & & & \\ 100 & & & & \\ 100 $	$\begin{array}{c c c c c c c c }\hline CH_3CH_2CH_2ND_2 & CH_3CH_2CD_2NH_2 & CH_3CD_2CH_2NH_2 \\\hline \hline 8a-Co^+ & 8a-Ni^+ & 8b-Co^+ & 8b-Ni^+ & 8c-Co^+ & 8c-Ni^+ \\\hline 100 & 45 & 100 & 70 & 67 \\ 55 & 30 & 100 & 33 \\\hline 100 & 100 & 100 & >99 & 3 \\\hline 100 & 100 & >99 & 3 \\\hline <1 & 77 & 97 \\\hline 100 & 100 & 100 & 100 \\\hline \end{array}$	$\begin{array}{c c c c c c c c c } \hline CH_3CH_2CH_2ND_2 & \hline CH_3CH_2CD_2NH_2 & \hline CH_3CD_2CH_2NH_2 & \hline CD_3CH_2 \\ \hline \hline 8a-Co^+ & 8a-Ni^+ & \hline 8b-Co^+ & 8b-Ni^+ & \hline 8c-Co^+ & 8c-Ni^+ & \hline 8d-Co^+ \\ \hline 100 & 45 & 100 & 70 & 67 & \\ \hline 55 & 30 & 100 & 33 & 100 \\ \hline 100 & 100 & 100 & >99 & 3 & \\ \hline & & & & & & & \\ \hline 100 & 100 & & & & & & \\ \hline & & & & & & & & \\ \hline 100 & 100 & & & & & & & \\ \hline 100 & 100 & & & & & & & \\ \hline 100 & 100 & & & & & & & \\ \hline 100 & 100 & & & & & & & \\ \hline 100 & 100 & & & & & & & \\ \hline 100 & 100 & & & & & & & \\ \hline \end{array}$

"See footnote in Table I.

We have considered several alternatives to Scheme IV without success. One example concerns the possibility that Fe⁺ may mediate an isomerization $n-C_3H_7NH_2 \rightarrow i-C_3H_7NH_2$. However, both the labeling data in Table I as well as the observation that the independently generated complex $i-C_3H_7NH_2/Fe^+$ forms only H₂ (95%) and CH₄ (5%) rule out this possibility.

For the $n-C_3H_7NH_2/Co^+$ system, the metastable ion spectrum is quite distinct from that of the analogous Fe⁺ complex (see Scheme III and Table II). Common to both transition metal ions is the production of H₂ and C₂H₄. For the Co⁺ system, we observe in addition transfer of a hydride ion from the α -methylene group (specific loss of neutral CoD from **8b**-Co⁺ and of CoH from the remaining isotopomeric complexes). Both C₃H₆ and NH₃ are not generated from the C₃H₇NH₂/Co⁺ complex. Molecular hydrogen, liberated from C₃H₇NH₂/Co⁺, originates from the β and γ positions; H-scrambling is not observed, and the reaction may well proceed analogous to Scheme II: $4 \rightarrow 5 \rightarrow 6$ (X = NH₂; M = Co). In view of Allison's conjecture¹⁶ it is important to stress that there exists *no* evidence for activation of N-H bonds by Co⁺ (see also above for Fe⁺).

With regard to the Co⁺-mediated formation of C_2H_4 from $n-C_3H_7NH_2$, the labeling data prove that the olefin originates from the β and γ positions of the propyl chain (loss of C₂H₄ and not of $C_2H_2D_2$ from $CH_3CH_2CD_2NH_2/Co^+$). This indicates that a reaction analogous to Scheme II is operative $(4 \rightarrow 5 \rightarrow 7)$. However, the study of CH₃CD₂CH₂NH₂ (8c) and of CD₃CH₂- CH_2NH_2 (8d) reveals that ethylene detachment is preceded by a partial exchange of the hydrogens originally attached to the β and γ positions of the propyl chain. From 8c-Co⁺ the neutrals $C_2H_2D_2$ and C_2H_3D are formed in a ratio 2.8:1, and from 8d-Co⁺ the isotopomers $C_2H_2D_2$ and C_2HD_3 are generated in a ratio 2.7:1. For a complete equilibration of an A_3B_2 system (A, B = H, D), from the precursors $\mathbf{8c}$ and $\mathbf{8d}$ the isotopomers $C_2A_2B_2$ and C_2A_3B should be formed in a ratio 1.5:1. We suppose, that the direct ethylene detachment is in competition with an exchange process, as depicted in Scheme V (with $L = CH_2NH_2$). It is interesting to note that Co⁺-mediated generation of C_2H_4 involving the α position of the propyl chain, which is completely absent in the MI mass spectrum of $C_3H_7NH_2/Co^+$, is observed upon collisional activation. Under this condition roughly 20% of the total ethylene originates from $C(\alpha)/C(\beta)$, and an intermediate analogous to 10 (Fe⁺ replaced by Co⁺) may account for this observation.

The $C_3H_7NH_2/M^+$ systems are only deceptively similar for M = Co, Ni in that the same neutral products are formed. The labeling data for M = Ni (Table II) demonstrate a more complex reaction pattern. The hydride abstraction by both transition-metal ions Co⁺ and Ni⁺ is a specific process which involves only the α -methylene group (C₃H₇NH₂/M⁺ \rightarrow MH + CH₃CH₂CH= NH₂⁺). The generation of molecular hydrogen is no longer a reaction which results from activation of the β and γ positions Scheme V

for M = Ni. In contrast to M = Co, where hydrogen is specifically generated from these positions, all hydrogens of the $C_3H_7NH_2/Ni^+$ complex contribute to the production of molecular hydrogen. Obviously, extensive hydrogen exchange must precede the actual reductive elimination step. This is also indicated by the data for the formation of $C_2H_{4-x}D_x$. While the major part of the neutral originates from $C(\beta)$ and $C(\gamma)$, in addition an unprecedented "coupling" of $C(\alpha)/C(\gamma)$ must occur as demonstrated by the 3% loss of C_2H_4 from $CH_3CD_2CH_2NH_2/Ni^+$.

In their detailed ICR study of the $n-C_3H_7NH_2/M^+$ system (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn), Babinec and Allison^{3b} note that Fe⁺ is the only metal ion that inserts into the C-N bond of this particular amine. This result is not borne out by our experiments (Scheme III, Table I), which point to an activation of the $C(\beta)/C(\gamma)$ bond of $C_3H_7NH_2$. In addition, for the major reaction (loss of C_2H_4) a mechanism was put forward^{1f} which involves insertion of the metal ions into the $C(\alpha)-C(\beta)$ bond. Again, our labeling data (Table I) do not support this generalized proposal; rather, the results given in Table I point to a highly specific interaction of the "anchored" Fe⁺ with the C(β)-C(γ) bond, thus giving rise to isotopomeric products which had to go unnoticed in the earlier studies as no adequately labeled substrates were employed. However, for $M = Co^+$ and Ni^+ it is the central C-C bond which is eventually cleaved. The mechanism of this reaction may, however, commence with the remote functionalization of a C-H bond of the methyl group, followed by C-C cleavage, rather than direct C-C bond addition.²⁶

2. $n-C_3H_7OH/M^+$ Systems. Several studies are already known in the literature for the gas-phase chemistry of transition-metal ions with *n*-propyl alcohol.^{3a,12} With regard to the various bonds of C_3H_7OH to be oxidatively added to M⁺, the existing data were reported to favor insertion into the C-O bond followed by β -hydrogen transfer to generate complex 3 (Scheme I: $R = CH_3$; X = OH). In fact, for $M = Fe^+$ and Co⁺ the major process (loss of H_2O) can be accounted for in terms of Scheme I. Unfortunately, no pertinent labeling experiments were included in the previous studies. As will be demonstrated, the study of a large set of isotopomers of *n*-propyl alcohol (15), i.e., *n*-C₃H₇OD (15a), CH₃CH₂CD₂OH (15b), CH₃CD₂CH₂OH (15c), and CD₃CH₂-CH₂OH (15d), permits a more refined description of the various

⁽²⁴⁾ For bimolecular metathesis reactions of transition-metal ions in the gas phase, see: (a) Stevens, A. E.; Beauchamp, J. L. J. Am. Chem. Soc. 1979, 101, 6449. (b) Halle, L. F.; Armentrout, P. B.; Beauchamp, J. L. Ibid. 1983, 105, 1829. (c) Jacobson, D. B.; Freiser, B. S. Ibid. 1985, 107, 2605. (d) Kang, H.; Beauchamp, J. L. Ibid. 1986, 108, 5663. (e) Buckner, S. W.; Gord, J. R.; Freiser, B. S. Ibid. 1988, 110, 6606. (f) Reference In.

^{(25) (}a) Reference 1c. (b) Reference 1f.

⁽²⁶⁾ A clear-cut case for metal-ion induced activation of C-C bonds, without any C-H activation steps involved, was recently described for the C_4H_8 loss from $(C_2H_5)_2CHCH_2NH_2/Fe^+$: Karrass, S.; Schwarz, H. *Helv. Chim. Acta* **1989**, *72*, 633.

Δm

Table III. Hydrogen and Water Losses from n-C3H7OH/M⁺ Isotopomers (MI Spectra)^a

	CH₃C	CH ₂ CH ₂ OD) (15a)	CH3C	CH ₃ CH ₂ CD ₂ OH (15b)		CH ₃ CD ₂ CH ₂ OH (15c)		CD ₃ CH ₂ CH ₂ OH (15d)		I (15d)	
	Fe ⁺	Co+	Ni ⁺	Fe ⁺	Co+	Ni ⁺	Fe+	Co+	Ni ⁺	Fe ⁺	Co+	Ni ⁺
H ₂ HD			24 76			25 76			83 17			50 50
H2O HDO	13 87	18 82	14 86	80 20	56 44	86 14	81 19	57 43	29 71	80 20	91 9	94 6

"See footnote in Table I.

Scheme VI

neutral molecule % abundance

				M = Fe	M = Co	M = Ni
		2	H ₂	-	-	9
		18	H₂O	100	78	40
љс н он / м ⊕		28	C2H4	-	3	22
<u>15</u> -M®		32	сн₃он		12	, 20
(M = Fe,Co,Ni)		42	C₃H ₆		3	6
	Ļ	60	C₃H80		4	3

reactions, which are observed in addition to the dehydration process in the MI spectra (Scheme VI) of $n-C_3H_7OH/M^+$ (15-M⁺). For the sake of clarity each process will be discussed separately for the various metal ions M⁺.

The loss of molecular hydrogen is only observed for the C_3H_7OH/Ni^+ complex. While a significant portion originates from the β position, from the data in Table III it has to be concluded that all C-H bonds as well as the O-H bond are involved in the dehydrogenation. It remains open to question whether this reflects extensive reversible processes or, as suggested by Gross et al.,^{12b} is due to unspecific direct insertion of the metal ion into the various X-H bonds, followed by β -hydrogen migration and reductive elimination.

Dehydration of $n-C_3H_7OH$ is mediated by all three metal ions Fe⁺, Co⁺, and Ni⁺. The labeling data (Table III) reveal significant differences with regard to the sites which participate in the formation of the neutral molecule. For $n-C_3H_7OH/Fe^+$, all CH bonds serve as a hydrogen source. Interestingly, loss of H₂O from C₃H₇OD/M⁺ is observed for all three metal ions to some extent

Scheme VII

Table IV. Co⁺- and Ni⁺-Mediated Formation of Ethylene from n-Propyl Alcohol Isotopomers^{*a*,*b*}

	CH ₃ CH ₂ - CD ₂ OH (15b)		CH3 ¹ CH2OH	CD ₂ - I (15c)	CD ₃ CH ₂ - CH ₂ OH (15d)		
	Co+	Ni ⁺	Co+	Ni ⁺	Co+	Ni ⁺	
C₂H₄		83		6	100	25	
$C_2H_2D_2$	100	17	100	94		75	
			- 1				

^aSee footnote in Table I. ^b In the MI spectrum of $CH_3CH_2CH_2OD/Ni^+$ in addition to C_2H_4 (97%), there is also a signal due to the elimination of C_2H_3D (3%).

Table V. Co⁺- and Ni⁺-Mediated Formation of Methanol from n-Propyl Alcohol Isotopomers^{a,b}

	CH ₃ CH ₂ - CD ₂ OH (15b)		CH3 CH2OH	CD ₂ - H (15c)	CD ₃ CH ₂ - CH ₂ OH (15d)		
	Co+	Ni ⁺	Co+	Ni ⁺	Co+	Ni ⁺	
CH ₃ OH CH₂DOH	100	20	100	100		81	
CD₂HOH CD₃OH		00			100	19	

^aSee footnote in Table I. ^bIn the MI spectrum of $CH_3CH_2CH_2OD/M^+$ (M = Co, Ni) in addition to signals for CH_3OD , there appear weak signals (<3%) due to CH_3OH .

(13-18%). Obviously, the hydroxyl group is capable of exchanging its hydrogen atom with the alkyl chain. For the Co⁺ system the data clearly reveal the near-equivalence of the α - and β -methylene group, which serve as major source in the hydrogen-transfer step. This situation is reminiscent of the Fe⁺-mediated NH₃ loss from C₃H₇NH₂ and may suggest that a mechanism similar to the one depicted in Scheme IV is operative for the Co⁺-induced dehydration of *n*-C₃H₇OH. In the C₃H₇OH/Ni⁺ system, this "equilibration" is less pronounced compared to the Co⁺ complex. Most of the hydrogen is provided by the "intact" β -methylene unit. Common to Co⁺ and Ni⁺ is the relatively minor involvement of the methyl group in the production of H₂O (9 and 6%, respectively); for the C₃H₇OH/Fe⁺ system this position is involved to a larger extent (20%), supporting Gross's view^{12b} that Fe⁺ is the

Table VI. CO - and INI -MEDIATOR FUTBILION OF FUDDING HUM A-FUDDY AND NOT SOLUDOMEN	Table VI.	Co ⁺ - and	Ni ⁺ -Mediated	Formation of	Propene from	n-Propyl	Alcohol	Isotopomers
---	-----------	-----------------------	---------------------------	--------------	--------------	----------	---------	-------------

	CH₃CH (1	$CH_{3}CH_{2}CH_{2}OD$ (15a)		CH ₃ CH ₂ CD ₂ OH (15b)		CH ₃ CD ₂ CH ₂ OH (15c)		CD ₃ CH ₂ CH ₂ OH (15d)	
	Co ⁺	Ni ⁺	Co+	Ni ⁺	Co ⁺	Ni ⁺	Co+	Ni ⁺	
C ₃ H ₆	100	95							
C ₃ H ₅ D		5	44	43	40	25			
$C_{1}H_{4}D_{2}$			56	57	60	75	25	24	
$C_3H_3D_3$							75	76	

^aSee footnote in Table I.

least selective metal ion for this particular substrate.

Though formed with different abundance (Scheme VI), C₂H₄ is generated from $n-C_3H_7OH$ by both Co⁺ and Ni⁺. However, the mechanism of this reaction must be completely different for either metal ion as demonstrated by the study of the isotopomers of 15. For the Co⁺ system, ethylene consists exclusively of the α - and β -methylene units. This result is in line with the data reported above for the Co+-mediated dehydration of C3H7OH and supports the mechanism analogous to Scheme IV. In distinct contrast, Ni⁺ generates ethylene in a more complex manner (see Table IV). While the major fraction (ca. 75%) contains the β/γ positions (Scheme II) and to ca. 17% the α/β -methylene groups (analogous to Scheme IV), there has to exist an additional path which "couples" the α/γ units (see loss of C₂H₄ (6%) from $CH_3CD_2CH_2OH/Ni^+$). It is interesting to recall (see above) that in the analogous $n-C_3H_7NH_2/M^+$ complexes, both metal ions generate C_2H_4 from the β/γ positions, however, with a significant amount of scrambling for $M = Co^+$. Obviously, for the time being it is by no means justified to describe the gas-phase metal-ion chemistry of systems structurally as similar as $C_3H_7NH_2/M^+$ and C_3H_7OH/M^+ in terms of a "generalized" mechanism!

The distinct role of the transition-metal ions is also evidenced by the mechanisms operative in the formation of methanol from *n*-propyl alcohol. For the Co⁺ system the labeling data (Table V) prove a highly specific path (Scheme VII); methanol is built up from the intact OH and CH₃ groups of the educt. In contrast, for the Ni⁺ complex, this mode constitutes a minor route (ca. 19%); the major path (81%) is due to a cleavage of the $C(\alpha)/C(\beta)$ bond of CH₃CH₂-CH₂OH, followed by β -hydrogen transfer from the methyl group (Scheme VII: 15-Ni⁺ \rightarrow 17 \rightarrow 18). The alternative path, commencing with CH activation, cannot be ruled out with certainty. We note that these results are in full accord with our interpretation for the formation of ethylene and water from C₃H₂OH/M⁺ (M = Co, Ni) (see above).

The metal-ion mediated formation of C_3H_6 (presumably propene) from C_3H_7OH/M^+ (M = Co, Ni) is for either complex accompanied or preceded by quite extensive hydrogen exchange processes, the actual amount of which, again, differs for Co⁺ and Ni⁺ (see Table VI). Although the data for the Co⁺ complexes indicate an "equilibration" of the α - and β -methylene groups prior to propene loss (see also Co⁺-mediated H₂O elimination which constitutes the counterpart to the propene formation), further studies are indicated before a definitive mechanism should be put forward.

Experimental Section

The experimental set-up has been described in earlier papers.^{5,7,10,11,13,22a,b} Metal ions are either generated by 100-eV electron impact ionization of $Fe(CO)_5$ or by bombarding $CoCl_2$ or $NiCl_2$ with 8-keV xenon atoms, using a procedure originally developed by Freas and Campana.²⁷ The sputtered metal ions (or organometallic species of unknown composition) were then reacted in the ion source of a VG instruments ZAB-HF-3F mass spectrometer²⁸ with the organic substrates n-C₃H₇X (X = NH₂, OH) and their isotopomers.²⁹ The resulting complexes are accelerated to 8-keV kinetic energy and mass selected by using BE; the unimolecular reactions (MI spectra) occurring in the field-free region between E and B(2) were recorded by scanning B(2). Signal-averaging techniques were used to increase the signal-to-noise ratio. All compounds were synthesized and purified by standard laboratory procedures and characterized by established spectroscopic techniques.

Acknowledgment. Financial support of our work by the Stiftung Volkswagenwerk, Fonds der Chemischen Industrie, and Gesellschaft von Freunden der Technischen Universität Berlin is gratefully acknowledged. We are indebted to Christian Schulze for enlightening discussions and the referees for helpful comments.

⁽²⁷⁾ Freas, R. B.; Campana, J. E. J. Am. Chem. Soc. 1985, 107, 6202.
(28) This instrument is of BEB configuration (B stands for magnetic and E for electric sector). For a description of the machine, see: (a) Weiske, T.
Ph.D. Thesis, Technische Universität Berlin, D 83, 1985. (b) Terlouw, J. K.;
Weiske; T.; Schwarz, H.; Holmes, J. L. Org. Mass Spectrom. 1986, 21, 665.

⁽²⁹⁾ It should be mentioned that the detailed mechanism by which the C_3H_7X/M^+ complexes are formed to open to speculation. The pressure in the ion source is, however, high enough to collisionally stabilize the complexes by multiple collisions.